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Abstract. We show that a charged hard-core boson with fractional statistics might have
anisotropic superconductivity, The vector potential of this magnetic field is singular and
depends on the electric charge density. Mapping the problem to a vortex lattice we find that
for the semion case the charge neutrality condition implies that the electric charge can have
two opposite vartices =1/2. As a result the two vortices bind forming a bosor, of charge 2e.
The critical temperature for binding is the Kosterlitz-Thouless one. Below this critical
temperature an effective model for anisotropic superconductivity is derived.

The purpose of this paper is to investigate the effects of a statistical gauge fieild on a bose
system. We show here that for the two-dimensional case the statistical field A that satisfies
the condition [1,2] V X A = (1/0)p(x) (p(x) =0, 1 is the electric charge density) is
changed to the statistical fieldasuch that V x a = 2x[g(r) + (1/272© }p(x)] where g(r) =
1, =1, =2. .. is the vorticity. When ® = 1/ each electric charge carries half a vortex.
Owing to the charge neutrality for each intrinsic vortex g(r} =0, =1 ... one needs to
electric charges (each one with half a vortex). It is this new condition which gives rise to
binding (for © = 1/7) of opposite vorticity with the same electric charge. As a result we
find binding with the charge 2e¢. The critical temperature for binding is identical to the
Kosterlitz-Thouless transition.

We consider a hard-core bose gas in two dimensions in the presence of a statistical
gauge field A(x):

H=1 2, b*(x)e“p(x + &) + HC+ ug 2 b (0)b(x) + V 2 (x)b* (x)b(x)b(x)
x,é=1,2 x x
(1)

where pg = i¢{8) is the chemicai potential for the bosons with concentration 4,
and V is a hard-core repulsive interaction, which imposes the condition p(x) =
b*(x)b(x) = 0, 1. The statistical gauge potential is given by the constraint condition [1]

p(x) =60V x A = BB(r) (2)

where B(r) is the statistical magnetic field defined on the dual lattice, and ® is the
strength parameter of the Chern-Simons term [1]. When @ = 1/x one finds that the
interchange of two particles multiples the wavefunction by a phase exp(in/2). This case
correspondstothe semion case (half-fermion, one has tointerchange twice the particles).
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When © = 1/2sr the wavefunction is multiplied by exp(ixr). This case corresponds to a
fermion.

In order to investigate equation (1) we use the coherent-state representation 3] of
the Hamiltonian given in equation (1) and introduce

b(x) = b(x) expli©,(x)] = r(x) explifix)]. )

The hard-core boson can be analysed with the use of the spin-coherent representation
for pin 1/2. In this representation r(x) is the amplitude and f{x) is the phase.

Using the spin-1/2 representation [4] we have r(x)=4sina(x) and
p(x) = b* (x)b(x) = b*(x)(b(x) = } — $,(x) with S,(x) = 4 cos a(x). Here r(x) is given in
terms of the density

r(x) = H[1 — cos? a(x)]"* = 1 - [1 - 20} = {p(x)[1 - p()]}"2.

We separate the vorticity @,(x) from the normal part ¥{x):

flx) = p(x) + B,(x). 4)
The functions 1(x} and ©,(x) satisfy the conditions

V(x) = VO(x) V®(x) = Vyp(x) (5)

VX VWx)#0 V-v9(x) =0 V X Vigy(x) = 0. (6)

Here O,(x) represents the vorticity. Basically we assume that b(x) vanishes at discrete
points. Around such points we have

blx) ~ b(x) e ~ bx) (x + iy)/(x* +y)* (V@] =1/n).

The function b(x) is smooth and the vanishing of b(x) is absorbed into the term
exp[i©,(x)]. The vector field V) = V@,(x) can be expressed with the aid of a scalar
function ®(r)

V() = A,0.(x) = £, A, () ™)

where we have used the definition A, f(x) =flx + )~ f(x) and &, =£4=0,
—&p=¢&y=-L
The vector field V¥(x) satisfies

VXVIx) = £, A, VI(x) = £,,A,8,, 8, P() = A20M(r) = 274(r)
g(rn=0,=%1,... (8)

where g(r) is the vorticity charge.
The presence of the statistical gauge field A(x) is included by the appearance of a
function exp[igp(x)]. The phase ¢(x) is related to A(x) by

Ap(x) = A, @(x) = @(x + u) — @(x). (%)
The kinetic term can be expressed as
b*(x) explid, (x)]b(x + p) = b* (x) exp[~i0,(x) — @(¥)]

X exp[+i®,(x + u) + ip(x + u)]b(x).

The vector field A,(x) can be represented with the aid of the scalar function ®“)(r)
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in the same way that V,(x) (the vortex ﬁeld) has been related to the scalar function
®")(r). Performing a similar analysis as in equations (7) and (8) we find

p(x) = qu(x) = E,uv (p(A) @)

VxA=g,A A, =¢,A,6, A, 0N(F) = A2DW(r) = B(). (10)
Combu:ung the results given in equations (7), (8) and (10) we find
VX (A+V0,)=Vxa=A2(®W(r) + ©V(r)) = AD(r)

= 2a{q(r) + (1/2m)B(r)] = 2xQ(") (11)

where we have defined

A(x) + VO, (x) = afx) &(r) = 2N + 2N (12)
with the property

V % a(x) = 20Q(r) = 21q(r) + (1/270)5* (x)b(x)] (13)

V.a(x)=0. (14)
Q(r) represents the total vorticity composed from ¢(r} =0, =1, . . . (the intrinsic

vorticity) and the external vorticity B(r)/2x induced by the electric charge (1/©)p(x).
Equation (13) shows that the statistical field A(x) is replaced by the vector potential a(x).
The Hamiltonian given in equation (1) takes the form

H =t b(x) e™®p(x + ) + HC + yb* (x)b(x) + VEE* (0)b* (x)b(x)B(x). (15)
x4

In equation (15) we perform the continuum approximation

2 b(x) €4 ®b(x + u) + HC = 2, b* (x)b(x + p) + HC — 2, b (x)b(x)al (x)
LY X4 X
+ 2y f Q4[5+ (x) 3,5(5)] a, (3). (16)

The function 5*(x) 3,5(x) satisfies

b5*1(x)3,b5(x) = r(x) e W 3,,[r(x) e¥X)] = ib* (x)b(x)[3, ()] + r(x) 8,r(x)
=i ()VP () + 8,7 (x) = VP )r* () [1 ~ 10,r2(x)/2(x))- (17)

Using the fact that 8,7%(x)/r*(x) < 1 we obtain for the last term in equation (16):

2| ] f d2x[b* (x) 8#5()5)] a,(x) = Q[ulmj 42V O (), ()
= 2lulr () [ d2x A, w(x)a,(x) = 21pl7E)

X (1},'(::)::!“(1«:)]“3cc - [dzx Y(x)A,a, (x)) =0. (18)

Equation (15) was obtained using the vanishing of y(x)a(x) on the boundary and
V - a = 0. Using equations (16) and (18), instead of equation (15) we have

H=Hy+H, (19
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with o
Hy = 357 (x)b(x + p) + HC + paZb* (x)b(x} + VEb* (x)b* (x)b(x)b(x) (20)

and
= —1 2 b* (x)b(x)al(x) = —tf d2x P (x)[A 2N = tr(x) J‘ d2x (A D(r).

X,
(21)
Using the spin-coherent representation we have

r’(x) = p(x)[1 - p(x)] = 5(1 - p)

where g is the quasi-condensate. In obtaining equation (21) we have used [5] g =
p(Ky) < &, which is the quasi-condensate at a finite momentum K. (In two dimensions
we have to use p(x) = p(Ky) + z(x) with (z(x}} = 0 and K, ~ py!.) We assume that all
the Fourier components K < K|, are contributing to the quasi-condensate as p( Kp).

Equation (21) can be further simplified if we use equation (11), A*d(r) = 22Q(r)
with the solution

®(r) = 2 G(r, 1)Q(").

The substitution of this solution in equation (21) gives
H, = 27ip 2 Q(G(r, Q) (22)

where ¢ = 1(1 — §) is the effective hopping.
Equation (22) can be further simplified if we remove the infrared divergences. This
is obtained by imposing the charge neutrality condition [6]

20N =90 Sq(r) = —(1/2m)EB(r).

Instead of equation (22) we have

H,= 235 ( S 0060, )00) + (/) T 0%0) (%)
where

G(r.ry= —In(Ky| r—7') (24)

Q0) = a(r) + (1/270)8* (B(2) 23)

The solution of equation (23) changes with ©. For @ = 1/2x the bosons become fermions
[1] This can be seen also from the charge equation. For © = 1/2s the charge Q(7) is
given by Q(r) = a(r) + b*(x)5(x).

As aresult of the charge neutrality condition we find that binding will occur between
the —1 intrinsic vortex and the +1 positive vortex induced by the electrical charge
b*(x)b(x). Here we have the situation where the electric charge that binds with a vortex
gives rise to a fermion.

For © = 1/m the vorticity is given by Q(r) = g(r) + $6*(x)b(x). Neutrality of
the vortex lattice is obtained if we choose the solutions: Q(r) =0, %1/2, =*1, .
(+1/2 corresponds to g(r) =0, b*(x)b(x) =1; —1/2 corresponds to g(r) = -1,
b*(x)b(x) = 1; =1 corresponds to g(r) = =1, b*(x)b(x) 0). For this case we can write
Q(r) = 1p(x) + m(r), p(x) = b*(x)b(x) and m(r) is an integral vorticity that satisfies
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Zm(r) = 0. The fractional vortices +1/2 can be expressed in terms of the electric charge
+30(x) = tp (x), &=+, —, p.(x) = p{x), p_(x) = ~p(x). At low temperature the
+3ip(x) and —3p(x) vortices are confined into dipoles. Therefore, two electric charges
p(x) with opposite vortices bind forming a boson of charge 2p(x) = 2e.

Since the neutrality condition Zm(r) = 0 is satisfied, the effect of the fluctuating
vorticity m(r) is evaluated by integration of these fluctuations [7]. The effect of these
fluctuations is to renormalize the vortex potential G(r, ') — Ge(r, ). At low tem-
perature this renormalization is not important. Physically one can understand this result
in the following way. The 3g . (x), —}p._(x) are confined into dipoles and the effect of the
integral vorticity m(r) is to form dipoles with the fractional charges. Since the formation
of dipoles m(r) with 3o (r} is not possible (fractional charges cannot form dipoles with
integral charges [7] we conclude that G 4(r, r') ~ G(r, ).

At high temperature a phase transition to a plasma phase is characterized by free
vortices and therefore free electric charges [6]. The critical temperature for formation
of pairs is identical to the Kosterlitz—Thouless transition for +1/2 vortices with
Tx ~ 2xpt ~ (1 — 6).

In order to study the question of superconductivity one has to consider in addition
to binding of vortices the kinetic part given in equation (20).

We use the notation p,(x) = b} (x)b,(x) with the index & = +, — representing the
=+ vorticity of the electric charge. Each electric charge has +1/2 or —1/2 vorticity. We
find an effective model that is similar to previous models, which might have a supercon-
ducting phase

H=1t 2 b2(x)ba(x + u) + HC + (1o + 7267/4) 2 b7 ()b 4 (x)
BN N 4 X, 0r

= @pif2) B bEIBLL ()W, 6 o (5B (0). (26)

x,x',e

The Hamiltonian given in equation (26) describes a hard-core boson with attractive
interaction (Vg(x, x") = Geglr, r') — V8{x ~ x")) for bosons with opposite spin « (vor-
ticity). The presence of the term V&(x — x') (V — ) prevents double occupancy (the
hard-core boson condition for bosons with opposite vorticity). In addition we have the
condition that (b,)* = (b})? = 0, the hard-core boson condition for the same vorticity.
This condition can be fulfilled if we replace the boson coherent states by Grassmanian
coherent states: C,, C} (fermions). The mapping [1] is performed with the aid of a
fictitious vector potential: A5(x) = y(x + u) — x(x), V x AT = 27C} (x)C,(x). The
relation between the two coherent-states representations is

by (x) = CZ(x) e¥® bolx) = ™% Cy(x).
The first condition of hard-core boson with opposite vorticity is enforced by the projector

Po=I111 = n.(x)n-(x) n.=C:C..

As aresult of these transformations we obtain instead of equation (26) the usual model
of fermions in a magnetic field with an attractive interaction Veglx, x') = Gudr, )
(instead of Vg(x, x") = Gea(r, ¥') — Vé(x — x")):

H=Pdﬁpd
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H=t 2 Cix)e“iC,(x+ p) + HC + (4o + 72H/4) X CL(x)C.(x)

X p o= 2 X
— (wpif2) % CHEICE ()G elx, x)C-(x')C, ().

If we replace AF by the mean-field condition,
X V = AF = 21(C (x)C,o (x)}
and
(CLE)IC(x)) ={CLx)C-(x) = Kp(x)),

we diagonalize the kinetic part. We obtain a complete orthonormal set of Grassmanian
numbers, €}, , €, . obtained from the original basis C} (x), C4(x) by a unitary trans-
formation, C =2, P,(x)CE(x), where {y{x)} are eigenstates of the tight-binding
Hamiltonian in a constant magnetic field. Owing to the attractive interaction, a singlet
wavefunction for the superconducting state is suggested:

L Nf2 ) N2
po=Pa([IC7.Ct) 0= P (STw@wciaCc:) o

N2

=P, (E a(x, x')C} (x)Ct(x')) 0.
x.x

The form of |@,.} with a(x, x') = IT, w,(x)y,(x") is identical to the generalized RVB state

introduced by Anderson [8] for the new superconductors.

To conclude, we have shown that a hard-core boson with a statistical fictitious vector
potential A(x), which describes the semion state ® = 1/, leads to the following picture.
The presence of the intrinsic vortices in the semion state plus the charge neutrality
condition give a binding with =1/2 vorticity. Below the Kosterlitz-Thouless transition
T < T we find an effective model, which might have anisotropic superconductivity.
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