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Superconductivity in the fractional-statistics gas 

D Schmeltzer 
Department of Physics, The City College of the City University of New York, New York, 
NY 10031, USA 

Received 21 lune 1989. in final form 3 April 1991 

Abstract. We show that a charged hard-core boson with fractional statistics might have 
anisotropic superconductivity. The vector potential of this magnetic field is singular and 
depends on the electric charge density. Mapping the problem to a vortex lattice we find that 
for the semion case the charge neutrality condition implies that the electric charge can have 
two opposite vortices i-112. As a result the two vortices bind forming a bosw sf charge 2e. 
The critical temperature for binding is the Kosterlitz-Thouless one. Below this critical 
temperature an effective model for anisotropic superconductivity is derived. 

The purpose of this paper is to investigate the effects of a statistical gauge field on a bose 
system. Weshowshere that for the two-dimensionalcase thestatisticalfieldA that satisfies 
the condition [l, 21 V X A = (l/O)p(x) (p (x )  = 0, 1 is the electric charge density) is 
changedtothestatisticalfieldasuchthatV X U = k[q ( r )  + (l/hO)p(x)]whereq(r) = 
1, +1, +2. . . is the vorticity. When 0 = l/z each electriccharge carries half avortex. 
Owing to the charge neutrality for each intrinsic vortex q(r) = 0, * 1 . . . one needs to 
electric charges (each one with half a vortex). It is this new condition which gives rise to 
binding (for 0 = l/n) of opposite vorticity with the same electric charge. As a result we 
find binding with the charge 2e. The critical temperature for binding is identical to the 
Kosterlitz-Thouless transition. 

We consider a hard-core bose gas in two dimensions in the presence of a statistical 
gauge fieldA(x): 

H = r  2 bt(x)e"i(x)b(x+P) + ~ c + p ~ ~ b + ( x ) b ( x ) +  V~(x)b'(x)b(x)b(x) 
x.b=1.2 x I 

(1) 

where po = pa(@ is the chemical potential for the bosons with concentration 6, 
and V is a hard-core repulsive interaction, which imposes the condition p ( x )  = 
b+(x)b(x) = 0 , l .  The statistical gauge potential is given by the constraint condition [l] 

p(x) = OV x A = OB(r) (2 )  

where B(r) is the statistical magnetic field defined on the dual lattice, and 0 is the 
strength parameter of the Chern-Simons term 111. When 0 = 1/z one finds that the 
interchange of two particles multiples the wavefunction by a phase exp(iz/2). This case 
corresponds to thesemioncase (half-fermion, one has to interchange twice theparticles). 
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When Q = l/& the wavefunction is multiplied by exp(i). This case corresponds to a 
fermion. 

In order to investigate equation (1) we use the coherent-state representation [3] of 
the Hamiltonian given in equation (1) and introduce 

b(x)  = 6 ( x )  exp[iQ,(x)] = r(x) exp[if(x)]. (3) 
The hard-core boson can be analysed with the use of the spin-coherent representation 
for pin 1/2. In this representation r(x)  is the amplitude andf(x) is the phase. 

Using the spin-1/2 representation [4] we have r ( x )  = Isin a(*) and 
p(x) = b+(x)b (x )  = 6+(x ) (b (x )  = 4 - S,(x) with S,(x) = 1 cos &). Here r(x) is given in 
terms of the density 

r(n) = $11 - cos2 4 x ) p  = 4(1 - [l - 2p(x)]2}'/2 = @(x)[l - p(x)]}'/2. 

We separate the vorticity O,(x) from the normal part V ( x ) :  

f ( x )  @ ( x )  + Q&). (4) 

v")(x) = VQ,(x) v(")(x) = Vyt(x)  (5) 
v x v(")(x) # 0 (6) 

The functions * ( x )  and O,(x) satisfy the conditions 

v . v'"(x) = 0 v x V , . ) ( X )  = 0. 

Here @,(I) represents the vorticity. Basically we assume that b(x)  vanishes at discrete 
points. Around such points we have 

b(x )  - b(x) - 6(x ) (x  + iy)/(x2 + y2)L/2 ( IW = 1/d. 

The function 6 ( x )  is smooth and the vanishing of b(x )  is absorbed into the term 
exp[iQ,(x)]. The vector field V(") = VO,(x) can be expressed with the aid of a scalar 
function @(q(r)  

V$")(x) = A,&(x) = E ~ ~ A ~ @ ( V ( ~ )  (7) 
where we have used the definition A&) = f ( x  + p )  - f ( x )  and 
-&,2  = EZ, = -1. 

= = 0, 

The vector field V(")(x) satisfies 

V X V(")(x) = E ~ ~ A , V $ " ) ( X )  = &rpArcpv.Ap4(")(r)  = A 2 @ ( q ( r )  = k q ( r )  

q(r) = 0, k l , .  . , (8) 
where q(r) is the vorticity charge. 

function exp[iq(x)]. The phase dx) is related toA(x) by 
The presence of the statistical gauge field A(x) is included by the appearance of a 

A P W  = A , d x )  = d x  + P) - d x ) .  (9) 
The kinetic term can be expressed as 

b + ( x )  exp[i,(x)]b(x + p )  = 6 + ( x )  exp[-iQ,(x) - p(x)] 

x exp[+i@,(x + p) + ip(x + p)]6(x) 

The vector field A J x )  can be represented with the aid of the scalar function W ) ( r )  
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in the same way that VJx) (the vortex field) has been related to the scalar function 
@(q(r). Performing a similar analysis as in equations (7) and (8) we find 

A , ( x )  = A,q(x)  = &PvAv@A)(r) 

V x A = &pvApAv c EPvAP&PY.Ap'@(A)(r) = A2@(A)(r) = B(r). 

Combining the results given in equations (7), (8) and (10) we find 

V x (A + VO,) I V x a = A2(@(A)(r) + d q ( r ) )  = A2@(r) 

= 2 d d r )  + (1/WB(r)l= b Q ( r )  
where we have defined 

A(x) + VS,(x) = a(x) @(r) = @(A)(r) + @(v(r) 
with the property 

V x a(x) = b Q ( r )  = 2n[q(r) + (l/bO)6'(x)6(x)] 

v . a(x) = 0. 

Q(r) represents the total vorticity composed from q( r )  = 0, +1, . . . (the intrinsic 
vorticity) and the external vorticity B(r ) /b  induced by the electric charge ( l / O ) p ( x ) .  
Equation (13) shows that the statistical fieldA(x) is replaced by the vector potentiala(x). 
The Hamiltonian given in equation (1) takes the form 

H = tE  6(x) eimJx)6(x + p )  + HC + po6+(x)6(x)  + ~ S + ( x ) 6 + ( x ) 6 ( x ) 6 ( x ) ,  
%P 

In  equation (15) we perform the continuum approximation 

C 6 ( x )  e"r(S)d(x + p) + HC = 2 6+(x)6(x  + p )  + HC - b+(x)6(x)a:(x) 
X . P  X . P  x 

+ i21p1 /d2n[6'(x) aP6(x)]a,(x). 

The function 6'(x) a,,6(x) satisfies 

6 + ' ( x ) a P 6 ( x )  = r(x) a , [r(x)  eiq(x)] = i6'(x)b(x)[d,v(x)] + r (x)  a,&) 

= ir2(x)vr)(x) + aPr2(x) = iv$')(x)r'(x)[l - idP?(x)/2rz(x)]. 

Using the fact that a,r2(x)/?(x) < 1 we obtain for the last term in equation (16): 

i21pl I d2x[6+(x) aP6(x)] a,,(x) = 

= i21p1r2(x) I d2x A,+(x)a,(x) = i2lplr2(w) 

Equation (15) was obtained using the vanishing of $J(x)Q(x) on the boundary and 
V .a = 0. Using equations (16) and (18), instead of equation (15) we have 

H = Ho + H ,  (19) 
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with 
H,, = f X 6 + ( x ) d ( x  + j ~ )  + HC + jJox6+(X)6(~) + E6'(X)b'(X)b(X)b(X) (20) 

and 

H, = -!E 6+(x)b(x)u~(x) = - t  d2x rZ(x)[Ap@(r)]* = t r z (x)  ,f d2x @(r)A2@(r). 
- 

(21) 
X.P I 

Using the spin-coherent representation we have - 
?(x) = P(X)[l - P(4 l  = P(1 - p? 

where p is the quasi-condensate. In obtaining equation (21) we have used [5] p = 
p(Ko) 6 6 ,  which is the quasi-condensate at a finite momentum KO. (In two dimensions 
we have to use p(x) = p(Ko) + a(x) with ( ~ ( x ) )  = 0 and KO - p $ . )  We assume that all 
the Fourier components K < KO are contributing to the quasi-condensate as p(Ko) .  

Equation (21) can be further simplified if we use equation ( 1 1 ) .  A2@(r) = ZnQ(r) 
with the solution 

@(r)  = G(r ,  r')Q(r'). 

The substitution of this solution in equation (21) gives 

,' 

H, = h i p  Q(r)G(r, r')Q(r') (22) 
I.,' 

where i- ( 1  - p? is the effective hopping. 

is obtained by imposing the charge neutrality condition [6] 
Equation (22) can be further simplified if we remove the infrared divergences. This 

xQ(r)  = 0 Q ( r )  = -(1/2a)EB(r). 

Instead of equation (22) we have 

H, = 2nLp (E Q(r)G(r, r')Q(r') + (4 Q2(r) )  (3) 

(24) 

(25) 

r # f  

where 
G(r , r ' )  = -In(Kol r - r'l) 

Q(r)  = q(r) + (1/2n0)b1(x)6(x). 
Thesolutionofequation(23)changeswithQ. For@ = 1/2~thehosonshecomefennions 
[l]. This can be seen also from the charge equation. For 0 = 1/2z the charge Q(r) is 
given by Q(r)  = q(r)  + 6+(x)6(x). 

As a result of the charge neutrality condition we find that binding will occur between 
the -1 intrinsic vortex and the + 1  positive vortex induced by the electrical charge 
6'(x)b(x). Here we have the situation where the electric charge that hinds witha vortex 
gives rise to a fermion. 

For 0 = l/a the vorticity is given by Q(r)  = q(r) + 16+(x)b(x). Neutrality of 
the vortex lattice is obtained if we choose the solutions: Q(r) = 0, +1/2, +l, . . . 
(+1/2 corresponds to q ( r )  = 0, b+(x)b(x) = 1; _1/2 corresponds to q(r) = - 1 ,  
bf(x)6(x) = 1; * 1 corresponds to q(r) = kl, b+(x)b(x) = 0). For this case we can write 
Q(r) = i-*p(x) + m(r), p(x) = 6 ' (x )6 (x )  and m(r) is an integral vorticity that satisfies 
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Zm(r) = 0. The fractional vortices +1/2 can be expressed in termsof the electric charge 
+&p(x) = ipdx),  01 = +, -, p+(x) = p(x), p-(x) = -p(x). At low temperature the 
+$p(x) and -I&) vortices are confined into dipoles. Therefore, two electric charges 
p(x) with opposite vortices bind forming a boson of charge 2p(x) = 2e. 

Since the neutrality condition 2Em(r) = 0 is satisfied, the effect of the fluctuating 
vorticity m(r) is evaluated by integration of these fluctuations [ I .  The effect of these 
fluctuations is to renormalize the vortex potential G ( r ,  r')+ G&, r'). At low tem- 
perature this renormahation is not important. Physically one can understand this result 
in the following way. The Ip+(x) ,  -Ip-(x) are confined into dipoles and the effect of the 
integral vorticity m(r) is to form dipoles with the fractional charges. Since the formation 
of dipoles m(r) with &p+(r) is not possible (fractional charges cannot form dipoles with 
integral charges [7] we conclude that Gefi(r, r') - G(r, r'). 

At high temperature a phase transition to a plasma phase is characterized by free 
vortices and therefore free electric charges [6] .  The critical temperature for formation 
of pairs is identical to the Kosterlitz-Thouless transition for +1/2 vortices with 

In order to study the question of superconductivity one has to consider in addition 
to binding of vortices the kinetic part given in equation (20). 

We use the notation p , ( x )  = 6 : ( x ) 6 , ( x )  with the index 01 = +, - representing the 
2 vorticity of the electric charge. Each electric charge has +1/2 or -1/2 vorticity. We 
find an effective model that is similar to previous models, which might have a supercon- 
ducting phase 

H = t Z 6 ; ( x ) 6 , ( ~  + p )  + HC + (po + jzzpi/t;) Z 6 , + ( ~ ) 6 , ( x )  

TK -2Zpi- t6(l - 6). 

r,!4e x.* 

- (npq2)  2 6 : ( x ) 6 ' , ( x ~ ) v , , ( x , x , ) ~ - , ( x ' ) 6 , ( x ) .  
X.X.... 

The Hamiltonian given in equation (26) describes a hard-core boson with attractive 
interaction (V&, x ' )  = &(r, r') - V6(x  - x ' ) )  for bosons with opposite spin 01 (vor- 
ticity). The presence of the term V6(x - x ' )  (V+ m) prevents double occupancy (the 
hard-core boson condition for bosons with opposite vorticity). In addition we have the 
condition that (6,)' = (6;)' = 0, the hard-core boson condition for the same vorticity. 
This condition can be fulfilled if we replace the boson coherent states by Grassmanian 
coherent states: C,, C,+ (fermions). The mapping [l] is performed with the aid of a 
fictitious vector potential: AL(x) = x(x  + p )  - ~ ( x ) ,  V X AF = 2nC:(x)C,(x). The 
relation between the two coherent-states representations is 

6 : ( x )  = c:(x)e'X@) 6, (x )  = e-'fi")c,(x). 

The firstconditionofhard-core boson withoppositevorticityisenforced by the projector 

pd= rI [ I -  n+(x)n-(x)I n ,  = CZC,.  
x 

As a result of these transformations we obtain instead of equation (26) the usual model 
of fermions in a magnetic field with an attractive interaction V&, x ' )  = G&, r') 
(instead of V,,(x, x ' )  = Ge&, r') - VS(x - x ' ) ) :  

H = P,HPd 
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H = t ~ : ( x )  edWC,(x + p )  + HC + (po + di&'4) 2 c,+(x)c,(x) 

- (n&/Z) 2 c: (x)C?(xy2, (x ,  x ' )C-(x ' )C+(x) .  

x.p.u= = X.D 

x*r' 

If we replace AF by the mean-field condition, 

X V =AF = 2n(C,f(x)C,(x)) 

and 

(c:(x)ct(x)) = (C?(x)C.-(x)) = I@(x) ) ,  
we diagonalize the kinetic part. We obtain a complete orthonormal set of Grassmanian 
numbers, Ct,,  cl+ obtained from the original basis C:(x), C,(x) by a unitary trans- 
formation, Cz, = & ?$&)C;(x), where {?$Ax)} are eigenstates of the tight-binding 
Hamiltonian in a constant magnetic field. Owing to the attractive interaction, a singlet 
wavefunction for the superconducting state is suggested 

N / z  
= p d  (~LI(x.x')c:(*)c!:(x')) X , Y  10). 

The form of lq?> with a(& x ' )  = nJ $OAx)?$l(x') is identical to the generalized RVB state 
introduced by Anderson [8] for the new superconductors. 

To conclude, we have shown that a hard-core boson with a statistical fictitious vector 
potentialA(x), whichdescribesthesemionstateQ = l/x, leadsto the followingpicture. 
The presence of the intrinsic vortices in the semion state plus the charge neutrality 
condition give a binding with &1/2 vorticity. Below the Kosterlitz-Thouless transition 
T < T, we find an effective model, which might have anisotropic superconductivity. 
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